Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.

نویسندگان

  • Chen Rao
  • Teruaki Ikeda
  • Toshiyuki Nakata
  • Hao Liu
چکیده

Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0°  <  AoA  <  20°), and hence play a crucial role in aerodynamic force and sound production. We find that there exists a tradeoff between force production and sound suppression: serrated leading-edges reduce aerodynamic performance at lower AoAs  <  15° compared to clean leading-edges but are capable of achieving both noise reduction and aerodynamic performance at higher AoAs  >  15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes)

BACKGROUND Owls have developed serrations, comb-like structures, along the leading edge of their wings. Serrations were investigated from a morphological and a mechanical point of view, but were not yet quantitatively compared for different species. Such a comparative investigation of serrations from species of different sizes and activity patterns may provide new information about the function...

متن کامل

Performance and mechanism of sinusoidal leading edge serrations for the reduction of turbulence-aerofoil interaction noise

This paper presents the results of a detailed experimental investigation into the effectiveness of sinusoidal leading edge serrations on aerofoils for the reduction of the noise generated by the interaction with turbulent flow. A detailed parametric study is performed to investigate the sensitivity of the noise reductions to the serration amplitude and wavelength. The study is primarily perform...

متن کامل

Influence of Non-Uniform Wall Temperature on Local Heat Transfer Coefficient in a Rotating Square Channel

 Abstract: This paper presents the results of an experimental examination of the effect of non-uniform wall temperature on local heat transfer coefficient in a rotating smooth-walled square channel. Three different thermal boundary situations were investigated: (a) even and odd (four) wall uniform temperature, (b) even and odd (four) wall uniform heat flux, and (c) even (leading and trailing) w...

متن کامل

Aerodynamic effects of flexibility in flapping wings.

Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast,...

متن کامل

Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers

The synthesis of a comprehensive theory of force production in insect flight is hindered in part by the lack of precise knowledge of unsteady forces produced by wings. Data are especially sparse in the intermediate Reynolds number regime (10<Re<1000) appropriate for the flight of small insects. This paper attempts to fill this deficit by quantifying the time-dependence of aerodynamic forces for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinspiration & biomimetics

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2017